Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 9, 2026
-
Abstract. The oxidation of dimethyl sulfide (DMS) in the marine atmosphere represents an important natural source of non-sea-salt sulfate aerosol, but the chemical mechanisms underlying this process remain uncertain. While recent studies have focused on the role of the peroxy radical isomerization channel in DMS oxidation, this work revisits the impact of the other channels (OH addition and OH abstraction followed by bimolecular RO2 reaction) on aerosol formation from DMS. Due to the presence of common intermediate species, the oxidation of dimethyl sulfoxide (DMSO) and dimethyl disulfide (DMDS) can shed light on these two DMS reaction channels; they are also both atmospherically relevant species in their own right. This work examines the OH oxidation of DMSO and DMDS, using chamber experiments monitored by chemical ionization mass spectrometry and aerosol mass spectrometry to study the full range of sulfur-containing products across a range of NO concentrations. The oxidation of both compounds is found to lead to rapid aerosol formation (which does not involve the intermediate formation of SO2), with a substantial fraction (14 %–47 % S yield for DMSO and 5 %–21 % for DMDS) of reacted sulfur ending up in the particle phase and the highest yields observed under elevated NO conditions. Aerosol is observed to consist mainly of sulfate, methanesulfonic acid, and methanesulfinic acid. In the gas phase, the NOx dependence of several products, including SO2 and S2-containing organosulfur species, suggest reaction pathways not included in current mechanisms. Based on the commonalities with the DMS oxidation mechanism, DMSO and DMDS results are used to reconstruct DMS aerosol yields; these reconstructions roughly match DMS aerosol yield measurements from the literature but differ in composition, underscoring remaining uncertainties in sulfur chemistry. This work indicates that both the abstraction and addition channels contribute to rapid aerosol formation from DMS and highlights the need for more study into the fate of small sulfur radical intermediates (e.g., CH3S, CH3SO2, and CH3SO3) that are thought to play central roles in the DMS oxidation mechanism.more » « less
-
null (Ed.)Bio-derived isobutanol has been approved as a gasoline additive in the US, but our understanding of its combustion chemistry still has significant uncertainties. Detailed quantum calculations could improve model accuracy leading to better estimation of isobutanol's combustion properties and its environmental impacts. This work examines 47 molecules and 38 reactions involved in the first oxygen addition to isobutanol's three alkyl radicals located α, β, and γ to the hydroxide. Quantum calculations are mostly done at CCSD(T)-F12/cc-pVTZ-F12//B3LYP/CBSB7, with 1-D hindered rotor corrections obtained at B3LYP/6-31G(d). The resulting potential energy surfaces are the most comprehensive isobutanol peroxy networks published to date. Canonical transition state theory and a 1-D microcanonical master equation are used to derive high-pressure-limit and pressure-dependent rate coefficients, respectively. At all conditions studied, the recombination of γ-isobutanol radical with O 2 forms HO 2 + isobutanal. The recombination of β-isobutanol radical with O 2 forms a stabilized hydroperoxy alkyl radical below 400 K, water + an alkoxy radical at higher temperatures, and HO 2 + an alkene above 1200 K. The recombination of β-isobutanol radical with O 2 results in a mixture of products between 700–1100 K, forming acetone + formaldehyde + OH at lower temperatures and forming HO 2 + alkenes at higher temperatures. The barrier heights, high-pressure-limit rates, and pressure-dependent kinetics generally agree with the results from previous quantum chemistry calculations. Six reaction rates in this work deviate by over three orders of magnitude from kinetics in detailed models of isobutanol combustion, suggesting the rates calculated here can help improve modeling of isobutanol combustion and its environmental fate.more » « less
-
null (Ed.)Abstract. Short-lived highly reactive atmospheric species, such as organic peroxy radicals (RO2) and stabilized Criegee intermediates (SCIs), play an important role in controlling the oxidative removal and transformation of many natural and anthropogenic trace gases in the atmosphere. Direct speciated measurements of these components are extremely helpful for understanding their atmospheric fate and impact. We describe thedevelopment of an online method for measurements of SCIs and RO2 inlaboratory experiments using chemical derivatization and spin trappingtechniques combined with H3O+ and NH4+ chemicalionization mass spectrometry (CIMS). Using chemical derivatization agentswith low proton affinity, such as electron-poor carbonyls, we scavenge allSCIs produced from a wide range of alkenes without depleting CIMS reagentions. Comparison between our measurements and results from numericmodeling, using a modified version of the Master Chemical Mechanism, showsthat the method can be used for the quantification of SCIs in laboratoryexperiments with a detection limit of 1.4×107 molecule cm−3for an integration time of 30 s with the instrumentation used in this study. Weshow that spin traps are highly reactive towards atmospheric radicals andform stable adducts with them by studying the gas-phase kinetics of thereaction of spin traps with the hydroxyl radical (OH). We also demonstrate that spin trapadducts with SCIs and RO2 can be simultaneously probed and quantified under laboratory conditions with a detection limit of 1.6×108 molecule cm−3 for an integration time of 30 s for RO2 species with the instrumentation used in this study. Spin trapping prevents radical secondary reactions and cycling, ensuring that measurements are not biased by chemical interferences, and it can be implemented for detecting RO2 species in laboratory studies and potentially in the ambient atmosphere.more » « less
-
Abstract. Fires emit a substantial amount of non-methane organic gases (NMOGs), theatmospheric oxidation of which can contribute to ozone and secondaryparticulate matter formation. However, the abundance and reactivity of thesefire NMOGs are uncertain and historically not well constrained. In thiswork, we expand the representation of fire NMOGs in a global chemicaltransport model, GEOS-Chem. We update emission factors to Andreae (2019) andthe chemical mechanism to include recent aromatic and ethene and ethyne modelimprovements(Bateset al., 2021; Kwon et al., 2021). We expand the representation of NMOGs byadding lumped furans to the model (including their fire emission andoxidation chemistry) and by adding fire emissions of nine species alreadyincluded in the model, prioritized for their reactivity using data from the Fire Influence on Regional to Global Environments (FIREX) laboratory studies. Based on quantified emissions factors, we estimatethat our improved representation captures 72 % of emitted, identified NMOGcarbon mass and 49 % of OH reactivity from savanna and temperate forestfires, a substantial increase from the standard model (49 % of mass,28 % of OH reactivity). We evaluate fire NMOGs in our model withobservations from the Amazon Tall Tower Observatory (ATTO) in Brazil, Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) and DC3 in the US, and Arctic Research of the Composition of theTroposphere from Aircraft and Satellites (ARCTAS) in boreal Canada. We show that NMOGs,including furan, are well simulated in the eastern US with someunderestimates in the western US and that adding fire emissions improves ourability to simulate ethene in boreal Canada. We estimate that fires provide15 % of annual mean simulated surface OH reactivity globally, as well as morethan 75 % over fire source regions. Over continental regions about half ofthis simulated fire reactivity comes from NMOG species. We find that furansand ethene are important globally for reactivity, while phenol is moreimportant at a local level in the boreal regions. This is the first globalestimate of the impact of fire on atmospheric reactivity.more » « less
-
null (Ed.)Abstract Atmospheric ice nucleating particles (INPs) influence global climate by altering cloud formation, lifetime, and precipitation efficiency. The role of secondary organic aerosol (SOA) material as a source of INPs in the ambient atmosphere has not been well defined. Here, we demonstrate the potential for biogenic SOA to activate as depositional INPs in the upper troposphere by combining field measurements with laboratory experiments. Ambient INPs were measured in a remote mountaintop location at –46 °C and an ice supersaturation of 30% with concentrations ranging from 0.1 to 70 L –1 . Concentrations of depositional INPs were positively correlated with the mass fractions and loadings of isoprene-derived secondary organic aerosols. Compositional analysis of ice residuals showed that ambient particles with isoprene-derived SOA material can act as depositional ice nuclei. Laboratory experiments further demonstrated the ability of isoprene-derived SOA to nucleate ice under a range of atmospheric conditions. We further show that ambient concentrations of isoprene-derived SOA can be competitive with other INP sources. This demonstrates that isoprene and potentially other biogenically-derived SOA materials could influence cirrus formation and properties.more » « less
An official website of the United States government
